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Abstract
We report on the observation of a novel manifestation of saturation-induced optical bistability in a
resonantly pumped optical ring cavity interacting strongly with a cloud of atoms via a narrow
atomic transition. The bistability emerges, above a critical pump rate, as an additional peak in the
cavity’s normal mode spectrum close to atomic resonance. This third transmission peak is usually
suppressed due to strong resonant absorption, but in our experiment it is visible because of the
linewidth of the atomic transition being much smaller than that of the cavity, which sets the
experiment into the bad-cavity regime. Relying on complete saturation of the transition, this
bistability has a quantum origin and cannot be mimicked by a classical material presenting a
nonlinear refraction index. The appearance of the central peak in addition to the normal modes is
predicted by a semi-classical model derived from the Tavis–Cummings Hamiltonian from which
we derive a bistability phase diagram that connects our observations with former work on optical
bistability in the good cavity regime. The phase diagram reveals several so far unexplored bistable
phases.

Cavity-mediated interactions between atoms provide a promising route to generate non-trivial interatomic
correlations leading to phenomena such as spin-squeezing [1–9], superradiant lasing [10–17], or quantum
state magnification [18, 19], which are of utmost interest for metrological applications. One important
request is that the rate of spontaneous emission Γ is small, leaving cavity decay occurring at a rate κ as the
only available decay channel. In this limit, known as the ‘bad cavity’ regime, non-classical features in the
photon statistics become more robust [20–24] and quantum correlations more stable. A second requirement
is a high collective cooperativity, which is a necessary condition for light emitted from one atom to be
reabsorbed by another one and thus information to be shared between atoms. These ingredients can lead to
nonlinear system dynamics and eventually to bistability. For the optical mode the bistability can manifest as
two stable states of transmission, whose realization depend on the history of the system. The bistability can
originate in different features of the system. For example in [25–29], it is caused by saturation, in [30, 31] by
optomechanical coupling, and in [32–34] by the multilevel structure of the ground state. Although all those
features are ultimately linked to atomic properties, not all of them can be considered as ‘quantum’, as some
can be mimicked, for example, by the nonlinear classical refraction index of a crystal. Resonant regions of
parameters are most likely to hold a bistable regime associated with quantum correlations: the resonance
condition ensures high saturation and therefore strong nonlinearity caused by the quantized nature of the
transition.

Strong interaction between the atoms and the cavity mode leads to normal mode splitting of the cavity’s
transmission resonance when the frequency of the atomic transition is close to the resonance of the empty
cavity [35–39]. From a semi-classical model of light-atom interaction, the atom-cavity resonances can be
found at those frequencies where the acquired phase for a round trip of the light inside the cavity filled with
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Figure 1. Saturation-induced phases of strongly coupled atom-cavity systems: depending on the pumping strength η the cavity
transmission spectra reveal different unistable and bistable phases (marked in red). These phases are well-known in the good
cavity limit (upper row): an increasing pumping strength drives the system from a normal mode unistable phase (NMU) across a
normal mode bistable wing phase (NMBW) and an empty cavity-like bistable center phase (ECBC) to an empty cavity-like
unistable phase (ECU). The bad cavity limit (lower row) features phases which are so far unexplored: the normal mode bistable
center phase (NMBC) and the normal mode bistable wing and center phase (NMBWC). It features also the empty cavity-like
bistable center phase (ECBC), appearing in the good cavity limit. The parameters used are g

√
N= 12.4κ in all subplots as in [26].

For the good and bad cavity limit, the atomic linewidth is set to Γ = 2κ and Γ = 0.01κ, respectively in the upper and lower row.
The pumping strength is chosen as indicated in the subplots in order to exemplarily show the different phases. The central part in
subfigure (g) has been horizontally stretched in order to show the narrow feature more clearly.

atoms is zero [27, 35]. For high collective cooperativity and moderate intracavity intensities, this zero-phase
condition generates three resonances: two that correspond to the normal mode splitting plus a central one
that is, in practice, heavily suppressed due to atomic absorption. But the use of a narrow atomic transition
can change this scenario and open a saturation-induced transparency window, allowing for an observation of
this central resonance.

In this work, contrasting with experiments [20, 25, 26, 28] carried out in the good-cavity limit, we choose
the narrow intercombination transition 1S0 ↔ 3P1 in atomic strontium with a decay rate Γ/2π = 7.5 kHz
for interaction with a cavity mode with amplitude decay width κ/2π = 3.4 MHz. This sets the system deep
into the bad cavity limit. At the same time the atom-field coupling strength gN = g

√
N with coupling

constant g/2π = 9.1 kHz is collectively enhanced by a number of up to N= 200000 atoms such that the
atoms are strongly coupled to the cavity. This allows us to probe the normal modes in the bad cavity limit
featuring a series of bistable phases, which are different from the ones in the good cavity limit. Figure 1 shows
normal mode spectra calculated for different cavity pump rates η. In particular, we can excite and study the
resonant normal mode, which is suppressed in the good cavity limit [26]. In figure 1 this is seen by
comparing the spectra (c) and (h). Note that the used transition has a low enough saturation intensity to be
saturated with even single photons in our cavity.

In section 1 we present our experimental setup, procedure, and measurements. In section 2 we expose
our model derived from the many-atom Dicke Hamiltonian. The stationary intracavity photon number
predicted by the model allows us to calculate the normal modes under special consideration of the respective
roles of atomic bunching, particular pumping schemes of the ring cavity modes, and saturation of the atomic
transition. We verified that our theoretical model describes the instabilities observed in other experiments
[27, 28]. The measurements are quantitatively compared with our model and interpreted in section 3.

1. Experiment

1.1. Experimental setup
The experimental setup has been presented in detail in [40]. In short, a cloud of about N= 200000 88Sr
atoms is cooled to temperatures around 1µK and transferred into the mode volume of a ring cavity operated
near the narrow intercombination line with the transition wavelength λa = 689 nm connecting the energy
levels (5s)2 1S0 and (5s5p) 3P1. The atomic cloud is confined to the mode volume by the optical dipole
potential formed by laser beams coupled into a TEM00 mode of the ring cavity (laser 2 in figure 2) under
p-polarization, where the finesse of the cavity is low (F≈ 100). The length of the ring cavity is stabilized to
this laser 2 via a Pound–Drever–Hall servo electronics. Laser 2, which is tuned∆dip/2π ≈−530Γ to the red
of the strontium resonance is, in turn, locked via a digital phase-locked loop (DPLL) to a second laser (laser 1
in figure 2), which itself is stabilized to a stable supercavity and operated near the strontium resonance.
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Figure 2. (a) Scheme of the lasers controlling the atom-cavity interaction: laser 1, which is tightly locked to a reference cavity via a
Pound–Drever–Hall servo (PDH), has a small detuning∆a from the narrow atomic resonance. It serves for cooling the atomic
cloud (red MOT) and for driving one of the counter-propagating modes (α+) of the ring cavity. The ring cavity is formed by
three mirrors, the input coupler (IC) and two high reflectors (HR). The transmission T through a high reflectors is recorded. A
second laser (laser 2) is phase-locked (DPLL) to laser 1 at 4 GHz below the atomic resonance. In contrast to laser 1, its intensity is
high. Coupled into one of the counter-propagating modes of the ring cavity it generates an optical dipole potential in which the
atomic cloud is confined. Transmission spectra showing normal mode splitting are obtained by ramping νrf and/or νmw.
(b) Detunings of the laser with respect to the atomic transition and to the ring cavity. (c) Simplified scheme of the ring cavity
illustrating dissipation processes due to spontaneous decay (Γ) and cavity transmission (κ).

Laser 1 serves for the last cooling stage of the atomic cloud, and also as a probe for the atom-cavity
interaction. In this latter role, the light of laser 1 is passed through AOMs, driven by a tunable
radio-frequency νrf and permitting to ramp the laser frequency ω with respect to the atomic resonance ωa,
thus generating a controlled detuning∆a = ω−ωa, and with respect to the ring cavity resonance ωc,
generating a detuning∆c = ω−ωc. On the other hand, we can control the detuning between the cavity and
the atomic resonance,∆ca = ωc −ωa =∆a −∆c, via the microwave-frequency νmw of the DPLL [40].

Injected into one of the two counter-propagating modes of the ring cavity, laser 2 generates an optical
dipole trap, in which the atomic cloud adopts a smooth density distribution elongated along the cavity’s
optical axis. Part of the light power of laser 1 is coupled as probe light into a TEM00 mode of the ring cavity
using s-polarization, where the finesse of the cavity is high (F≈ 1200), counter-propagating with laser 2. The
probe light transmitted through the pumped mode through a high reflecting mirror (transmission
Thr ≈ 0.001) is filtered by a polarizing beamsplitter, coupled into optical fibers and monitored. We infer the
intracavity power P from the transmitted probe light power Phr = ThrP= Thrh̄ωδfsrn, where δfsr = 8.23GHz
is the free spectral range of the ring cavity and n the intracavity photon number. Subscripts± refer to
counter-propagating modes of the ring cavity. In the following we assume that only the mode denoted by
α+, where |α+|2 = n, is pumped and that the mode α− is filled only via photonic backscattering by the
atomic cloud.

The cavity pump rate η+ is an experimental parameter which can be determined from the photon
number in the empty cavity under resonant driving, η+/κ= αη ≡ α+(N= 0,∆c = 0). It allows to express
the ring cavity transmission as, T= |α+/αη|2. With the saturation parameter given by s≡ 2Ω2/Γ2 defined
via the Rabi frequency Ω≡ 2g|α+| we find that the transition is saturated by a mean photon number of
|αsat|2 ≈ 0.087 corresponding to a power of Psat = h̄ωδfsr|αsat|2 ≈ 0.2 nW. In practice, we typically use
saturation parameters in the range s= P/Psat ≈ 100 . . .1000. The single-photon saturation s1 and the
single-atom cooperativityΥ are important parameters characterizing our coupled atom-cavity system,

s1 ≡
8g2

Γ2
≈ 11.5 , Υ≡ 4g2

κΓ
≈ 0.013 . (1)

1.2. Measurements
We record normal mode spectra by scanning∆a for fixed∆ca. The typical duration of a scan is
∆tscan = 0.25 ms. Repeating the scan for various∆ca we obtain the two-dimensional spectra shown in
figures 3(a)–(c) with false-color coding. Yellow indicates maximum cavity transmission and blue an
impermeable cavity reflecting the pump light completely.

The figures 3(a)–(c) show transmission spectra measured for different pump rates η+. The spectra show
a number of interesting features: (i) The normal modes are clearly visible as two resonances describing an
avoided crossing. These resonances are emphasized by dashed black lines in the figures. (ii) Near the atomic
resonance, around∆a ≃ 0, the spectra develop a narrow ridge of high transmission bridging the normal
modes. Normal mode spectra recorded by scanning∆a near the atom-cavity resonance, i.e. around∆ca ≃ 0,
therefore exhibit three peaks instead of two. (iii) The ridge is flanked by discontinuous steep precipices into
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Figure 3. (a)–(c) Measured cavity transmission for various η+ taken with N= 200000 atoms: The pump rate is varied from
(a) η+ = 110κ over (b) 140κ to (c) 200κ. (d)–(f) Calculated transmission spectra using equation (3) for pump rates
corresponding to those of (a)–(c) and all other experimental parameters as specified in the text. For the spectral regions
presenting bistability, the solution shown is the one with highest transmission. The diagonal black dotted lines show the mode of
an empty cavity (N= 0). The black dash-dotted lines are calculated from equation (4) using a saturation broadening estimated
fromΩη = 2gη+/κ. The dashed lines correspond to settingΩη = 0.

dark regions appearing as sharp horizontal features in the false color plots. The additional central peak has
sharp edges, pointing to bistable behavior of the cavity transmission.

Comparing different spectra taken for different pump rates η+ we notice additional features: (iv) The
(vertical) width of the bridge between the normal modes in figures 3(a)–(c), that is, the width of the central
peak in∆a-scans, increases with stronger pump rates η+. (v) As the pump rate is increased, the
discontinuous ledges are ‘pushed’ away from resonance towards higher |∆ca|. At sufficiently strong pumping
the avoided crossing of the normal modes turns into a dispersive lineshape.∆a-scans near atom-cavity
resonance still show three peaks, but do not any longer exhibit discontinuities arising from bistable behavior.

Figure 4 shows a more detailed study of the dependence of the normal mode spectra on the pump rate
η+. In figure 4(a) the pump laser was scanned from∆a =−2.2κ to+2.2κ, immediately followed by a scan
in the inverse direction exhibited in (b). The features to be extracted from these measurements are:
(vi) There is a central peak around∆a = 0 bordered by sharp edges. The central peak corresponds to the
‘bridge’ of figures 3(a)–(c). (vii) We note a hysteretic behavior of the sharp edges, as the position of the
central peak in figure 4(b) is slightly shifted as compared to (a). The latter feature is seen more clearly in a
single scan taken at a pump rate of η+ = 120 [white dashed lines in figures 4(a) and (b)] and plotted in
figure 4(d). (viii) The central peak increases its width at high pump rates. (ix) The distance between the
normal mode peaks diminishes when increasing the pump rate very far beyond saturation. Eventually all
peaks merge into a single one.

We identify in all those features a bistability mechanism of a different kind than previously reported in
the literature for atom-cavity systems. In the next sections we develop a semiclassical theory that fits well our
data and grasps this new mechanism [41].
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Figure 4. Pump rate dependence of the normal mode spectrum: (a) resp. (b) show normal mode spectra taken on resonance
(∆ca = 0) as a function of pump laser power, sη = s1nη = s1η2

+/κ2, for the atom-cavity detuning scanned in real time from
lower to higher (resp. higher to lower) values. Above saturation the distance between the normal modes diminishes with
increasing pump power. (c) Simulation based on the same equations as for figure 3 using the same experimental parameters as for
curves (a) and (b). The dashed lines show the low saturation value of the normal mode splitting. The dash-dotted lines denote the
frequencies of the normal modes calculated from equation (4). The measurements also show a hysteresis-like behavior. Looking at
vertical cuts along the white dashed line traced in figures (a) and (b) one observes that the jump between opaque and transparent
solutions is always delayed in the scanned direction (blue and red curves in figure (d), the arrows indicate the scan direction).
Note that the scan back sees the second normal mode (left peak of red curve) at reduced atomic distance. We attribute this to
heating or trap loss during the scan causing a reduction of the normal mode splitting.

2. Theoretical description

The energy spectrum of the coupled Tavis-Cummings system consisting of N atoms and one cavity mode has
been calculated in [42, 43]. In the following we will restrict to calculating the transmission spectra
T(∆ca,∆a) for our ring cavity [44].

The relevant degrees of freedom of our system are the counter-propagating field modes of the ring cavity,
described by the field operators â±, and the excitation of atoms located at positions zj along the cavity’s
optical axis, denoted by the Pauli operators σ̂±

j and σ̂z
j . To obtain an expression describing normal mode

splitting of our coupled atom-ring cavity system (see appendix A.1) we write down the collective
Hamiltonian and derive Heisenberg equations for the degrees of freedom. Spontaneous emission and cavity
decay are accounted for by jump operators for the dissipative processes occurring at rates Γ, respectively, κ.
Neglecting all quantum correlations we perform a semiclassical decorrelation [26] and derive the steady-state
solution for the expectation values α± = ⟨â±⟩. It reads (see equation (22) of the appendix),

N∑
j=1

Uγ

(
α± + e∓2ıkzj

)
α∓

1+ 2|Uγ/g|2|eıkzjα+ + e−ıkzjα−|2
= ıη± −∆κα± . (2)

with the abbreviations, Uγ ≡ U0 − ıγ0 ≡ g2/(∆a + ıΓ2 ) and∆κ ≡∆c + ıκ.
The expression (2) cannot be solved analytically except in some particular limits. The first simplification

consists in assuming that the cavity is pumped from one side only, η− = 0, and that the cloud is
homogeneously distributed over the mode volume of the cavity. In that case, we may neglect backscattered
light altogether, α− = 0, and equation (2) simplifies to,

α+ =
ıη+

∆κ − NUγ

1+2|Uγα+/g|2
. (3)

We note that this expression coincides with the equation (10) used by Gripp et al [26].

5



New J. Phys. 25 (2023) 093053 D Rivero et al

Taking the modulus squared of this expression, we arrive to a cubic equation for the average number of
photons inside the cavity mode n= |α+|2 [equation (25) of the appendix], which presents more than one
stable solution for a certain range of parameters. This bistable behavior leaves an experimental signature in
the form of sudden jumps of the cavity transmission upon changing certain parameters, e.g. the pump light
intensity or detuning, as already mentioned in the discussion of figures 3(a)–(c) in section 1.2. The
theoretical transmission spectra exhibited in figures 3(d)–(f) are proportional to the intracavity photon
number n and calculated for the same experimental parameters as figures 3(a)–(c), respectively. For the
bistable parameter regions, where more than one stable solution exists, the solution with highest
transmission is shown.

2.1. On-resonance and off-resonance bistability
The condition of zero phase shift for the intracavity light field α+ with respect to the pump field η+ can be
found by setting the imaginary part of the right-hand side of equation (3) to zero. It yields,

∆ca =∆a −
Ng2∆a

∆2
a +Γ2/4+Ω2

η/2
. (4)

In this expression Ωη = 2gη+/κ is the maximum Rabi frequency, i.e. the Rabi frequency if all impinging
photons would enter the cavity. The corresponding curve is shown in figure 3 as dash-dotted lines. We also
show in dashed lines the corresponding zero-phase shift curve for vanishing pump field, Ωη → 0. We note
that it follows closely the maxima of the experimental transmission curves for all range of experimental
parameters. Although this condition is generic for most experiments dealing with cavities filled with atoms
and operated in the strong collective coupling regime, the central peak is commonly suppressed due to
strong resonant absorption of the light by the atoms. In our case, the width of the atomic transition is very
small, and we can expect that very little light intensity will already saturate the transition, thus changing this
scenario. The rate of photon injection into the cavity, η+ = κnη , that saturates all atoms roughly equalizes
the rate at which they emit photons once they are saturated, NΓ/2. This means that for nη ≳ NΓ/2κ, the
atoms become transparent, and a transmission window opens around the empty cavity resonance. This
quantum nonlinear feature of the cavity transmission entails the appearance of a bistable spectral region near
resonance. The calculations in the appendix [see (46)] indeed show that for∆a =∆c = 0 a lower bound on
the pump rate for the appearance of two stable solutions (the signature of a bistable behavior) is,

nη ≳
NΓ

(
1+

√
3/2

)
2κ

, (5)

and the width of the bistable region for∆c = 0 is given by equation (52) as,

|∆a| ≃
g√
2

√
nη −

NΓ

2κ
=

1

2

√
Ω2

η

2
− Γ2ΥN

4
. (6)

We will call this bistability mechanism on-resonance bistability. It is present for example in the NMBC phase
shown in figure 1(g).

Gripp et al [26] find a qualitatively different modification of the normal mode splitting when the
intensity is increased, reproduced here in figures 1(a)–(e). For their parameters, the bistability emerges
off-resonance, at the inner edge of each of the normal mode splitting peaks. It appears for example in the
NMBW phase shown in figure 1(c). The underlying mechanism follows a prototypical intensity-driven
bistability also found in anharmonic classical mechanical oscillators [45] subject to an intensity-dependent
frequency shift of the normal mode splitting resonances. Upon further increase of the pump intensity, this
bistability mechanism eventually leads to a merger of the two normal mode peaks into a single transmission
peak. For κ,Γ≪ g

√
N (i.e. for a normal mode splitting much larger than the width of the normal mode

resonances), this happens when the two local extremes of the zero-phase condition curve∆ca as a function of
∆a as given by equation (4) merge into a single point (d∆ca/d∆a|∆a=0 = 0). This is the case when

Ng2 = Γ2/4+Ω2
η/2 . (7)

We may reasonably expect that, in order to have on-resonance bistability, the critical intensity for its
appearance, as described by equation (5), must be smaller than the critical intensity for the merging of the
off-resonance bistable spectral intervals. For Ng2 ≫ Γ2/4, this amounts to Γ(1+

√
3/2)≲ κ, which is

qualitatively the condition for the bad-cavity regime. Thus, it is the narrowness of the strontium transition
that allows us to observe the new bistable mechanism in our experiment. This new mechanism for bistability
relies not only on the nonlinearity of the atom-cavity interaction, but also on the complete saturation of the
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atomic population to cause full transparency of the cavity to light. Thus, it cannot be generated by a simple
nonlinear susceptibility.

2.2. Comparison to experiment
The calculated spectra in figures 3 and 4 are in good qualitative agreement with the measured ones. For
instance, comparing the spectra of figures 4(a) and (b) we notice that the bistability around the central peak
is symmetrically inverted when the scan direction is also inverted, and that the maximum of the transmission
is roughly independent of the pump rate, showing no anharmonicity in the resonance frequency. Those
features are also evident in the theoretical spectra of figures 1(f)–(j).

On the other hand, while the observed spectral width of the normal mode resonances agrees well with
the simulations and does not depend on the pump rate, the spectral width of the bistable region is
systematically larger than predicted by simulations. As illustrated in figure 4(c), the width of the bistable
region should be dominated by power broadening. But from earlier work [26, 28, 29, 32] we know that the
onset of bistability is accompanied by oscillations and hysteresis, that can lead to deformations and
broadening of the spectra not grasped by our stationary model.

As mentioned in section 1.2, we indeed observe hysteresis behavior. The oscillations are manifestations of
a ringing induced by a time lag between the evolution imposed by the scan and the evolution of the degrees
of freedom characterizing the system, which becomes relevant when the slowest time constant of our system,
which is the atomic decay rate 2π/Γ = 0.13 ms, is comparable to or slower than the scan duration
∆tscan = 0.25 ms. We indeed observe deformation of the spectra when shorter scan times∆tscan are chosen.
However, our photodetector, being optimized for high sensitivity to weak light intensities, is too slow to
resolve the fast oscillations.

An example for a spectral deformation can be observed in figure 4(d), where the normal mode splitting is
found to be larger on the first scan from negative to positive detunings (blue curve) than on the subsequent
scan in backward direction (red curve). The deformations of the spectra become stronger when longer scan
times are used. A possible reason can be heating of the atomic cloud during the scan causing a reduction of
the effective number of atoms interacting with the cavity.

We also note that, in sufficiently strong magnetic fields, a phenomenon called magnetically induced
transparency (MIT) [46] induced by the Zeeman substructure of the excited 3P1 state can add a central
feature to the normal mode spectra even at very low saturation. Numerical simulations performed with
linearized equations of motion, however, show a qualitatively different behavior as the one observed in
figure 3. Furthermore, we tested applying different magnetic fields without noticing a dependency.

3. Discussion

At vanishing pump rate, the shape of the transmission spectrum of the cavity strongly interacting with the
atomic cloud becomes independent on the single-photon saturation parameter s1 (see equation (25) in the
appendix). In particular, for collective strong coupling, g

√
N> κ,Γ, the spectrum presents a splitting of the

resonance reminiscent of two strongly coupled harmonic oscillators.
For collective strong coupling and a non-vanishing pump rate, the nonlinearity of the atom-light

interaction changes this simple scenario. Two other parameters then together determine whether the system
will be bistable or not and in which frequency interval bistability will occur. The first parameter is, obviously,
the pump rate η+ which can be represented either by the average photon number nη that it generates inside
the cavity at its bare resonance, or by the saturation parameter sη = s1nη .

Another crucial parameter for the emergence of bistability is the ratio between spontaneous and cavity
decay width, Γ/κ, which is the parameter that distinguishes between the good and bad cavity regime. In
figure 5 we calculate the transmission profile as a function of∆a and η+ obtained from the analytical solution
of equation (3). In figures 5(b) and (d) the atomic decay width and the atom-cavity coupling strength were
chosen as those of our experiment, Γ = 0.0022κ and gN = 1.2κ. The emergence of on-resonance bistability is
clearly visible in a wide range of pump rates. On the other hand, the spectra exhibited in figures 5(a) and (c)
were calculated for a much stronger spontaneous decay rate Γ = 2κ and gN = 12.4κ, corresponding to the
parameters used by Gripp et al [26], and show a bistable behavior that emerges from the deformation of the
normal mode peaks, until they merge to a single peak for high enough saturation.

3.1. Bistability phase diagram
In order to derive the complete phase diagram we have solved the steady-state equations for the transmission
spectrum for various values of the atomic transverse decay rate Γ/2 and the pump rate η+, both scaled to the
cavity linewidth κ. Some examples have already been plotted in figure 1. Details on how we solve the
equations are given in the appendix A.2.
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Figure 5. (a), (b) Transmission profiles as a function of∆a and η+ obtained from the analytical solution of equation (3). The
atomic decay width and the collective atom-cavity coupling strength were chosen for (a) Γ = 2κ and gN = 12.4κ and for
(b) Γ = 0.0022κ and gN = 1.2κ. Different colors are used to highlight different solutions in the bistable regime. (c), (d) Spectra
of the excited state populations corresponding to (a), (b) calculated from the expression (32) in the appendix.

Figure 6. Simulated phase diagram of the coupled atom-cavity system with saturation for (a) collective coupling strength
gN = 12.4κ as in [26] (marked by ∗) and (b) gN = 1.2κ as in our experiment. Observation of the NMBC phase is featured within
the bad cavity limit, while the NMBW and NMBWC phases disappears in the bad cavity limit. The black lines separating the
different phases are given by analytical formulas. The dotted diagonal line marks the onset of on-resonance bistability, and the
dash-dotted line that at the wings. The dashed line indicates the merging of bistability at the wings and at the center, and finally
the solid line marks the maximum pump rate to show bistability. Note that NMBWC- and NMBC-like phases exist also in the
strongly coupled good cavity limit, i.e. for κ < Γ/2< gN. In the case of weak coupling reached for even larger atomic linewidth
no bistable phase exists. The phase diagram (b) containing the experimental situation is much simpler because of the weaker
coupling strength gN = 1.2κ. Here, only the NMBC bistable phase survives.

We classify the bistable solutions by the overall shape of the spectrum, i.e. resembling either a normal
mode or an empty cavity spectrum, and by the frequencies at which the bistability occurs, i.e. either in the
wings or in the center of the spectrum. In figures 6(a) and (b) we compiled phase diagrams for two different
situations: figure 6(a) is done for gN = 12.4κ, reproducing the situation of Gripp et al [26], while figure 6(b)
is obtained for the collective coupling constant gN of our experimental system.

The parameter region for the occurrence of on-resonance bistability, identified by the existence of three
positive real solutions for∆a =∆c = 0, is limited to large values of nη by the condition (5). In contrast,
when the collective cooperativity is larger than the saturation parameter, only a single real solution of the

8
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Figure 7. (a) (resp. (b)): Maximum of the atomic excited state population (1+ ⟨σz
i ⟩)/2 for all light detunings, as a function of nη

and Γ/2κ, for same parameters as in figure 6(a) (resp. (b)). The continuous, dashed, dot-dashed and dotted black lines represents
the limits between the different bistable regions, identical to the limits in figure 6, and are discussed at the main text; The numbers
in parentheses correspond to the equations at the main text defining the limits. Inset of (a): atomic population as a function of nη
for a scan of nη following the red vertical line of figure (a), showing a continuous evolution of the atomic population when one
goes form a region of no bistability to a region of off-resonance bistability. Inset of (b): atomic population as a function of nη , for
a scan of nη following the red vertical line of figure (b), showing a discontinuity at the atomic population when going from a
region of no bistability to a region of on-resonance bistability.

intracavity light power exists in resonance. The condition (5) for the onset of on-resonance bistability is
represented as dotted black lines in figure 7.

For too strong pumping, as seen in figures 5, the bistability disappears for all values of Γ, and we get
spectra resembling that of an empty cavity (ECU for empty cavity-like bistable center phase). The maximum
pump rate for which bistability occurs is derived from (50) in the appendix A.5) as,

nη ≲
N2g2

8κ2
. (8)

which is plotted as continuous black horizontal lines. This upper boundary of the bistable region is met
when two out of three solutions become degenerate. The analytically derived phase boundaries agree very
well with the simulated phase diagrams.

At pump rates below the limit imposed by (8), the spectra present either on-resonance bistability (NMBC
for normal mode bistable center phase), off-resonance bistability (NMBW for normal mode bistable wing
phase), both separately (NMBWC for normal mode bistable wing and center phase) or a merging of both
bistable spectral regions (ECBC for empty cavity-like bistable center phase), as we will show below. For the
onset of off-resonance bistability close to the normal mode splitting resonances Gripp and Orozco [27]
derived the condition,

nη >
4
√
N

3
√
3

(κ+Γ/2)3

gκ2
, (9)

shown as dash-dotted black lines. We note that for a collective coupling strength comparable to the cavity
decay rate, as in our experimental situation and illustrated in figure 6(b), this limit is higher than the critical
pump rate according to the condition (8), and thus no off-resonance bistability can occur, which leaves the
NMBC bistable phase as the only option. For larger collective coupling strength as shown in figure 6(a), the
orange area delimits a NMBW phase where only off-resonance bistability exists (as shown in figure 1(c)), and
the green-shaded area delimits a region where both bistabilites coexist in a NMBWC phase; an example of
such spectra is also shown in figure 1(h). In the region below both conditions (5) and (9), only a unistable
solution exists, which characterizes a normal mode unistable (NMU) phase.

When further increasing the pump rate, the bistable regions of the spectrum merge into a ECBC phase.
The lower bound of this region is described by the empirically guessed expression,

nη ≳
N(κ+ 2Γ)

2κ
, (10)

identified as a dashed black line.
The atomic saturation is an important observable to characterize the different phases of the atom-cavity

system. Although more difficult to measure experimentally than the cavity transmission, it gives further
insight on the difference between the on-resonance and off-resonance bistability. Figures 7(a) and (b) show

9
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the maximum atomic excited state population achieved when scanning the laser frequency, for the same
parameters as for figures 6(a) and (b). We learn from the graphs that, while the presence of off-resonance
bistability does not require full saturation of the atomic population [see for example the region in figure 7(a)
that corresponds to the orange region in figure 6(a)], it is on the contrary required for the emergence of
on-resonance bistability [yellow areas in figures 7(a) and (b) and corresponding areas in figures 6(a) and
(b)]. We also note that, while the maximum atomic population is achieved off-resonance for the points
below the condition represented by equation (5), it is achieved on-resonance for the points above it, where
the full saturation is found. This further confirms that the underlying mechanism for this bistability is the
appearance of a transparency window caused by full saturation of the atoms. Moreover, the atomic
population presents a discontinuity when going from lower to higher pump rates, as the threshold for the
on-resonance bistability is crossed. This is also evident from the two insets of figures 7(a) and (b), calculated
for the parameters of [26] and for our experiment, respectively. Since it relies on the full saturation of a
quantum two-level transition, the on-resonance bistability cannot stem only from a nonlinear susceptibility
and is fully quantum in its origin, at odds with the off-resonance bistability.

3.2. Comparison to other experiments
The reason why bistability could be observed in the resonantly coupled regime (|∆c| ≪ κ) in our experiment
is that we are deep in the bad-cavity limit. As seen from figure 5, bistability around∆c = 0 appears over wide
ranges of pump rates η+ only if Γ≪ κ.

Previous experiments [25, 30–32] carried out with alkali atoms were all performed in the good-cavity
limit, due to the large spontaneous decay width Γ of the atomic transition. Another experiment carried out
by Gothe et al [28] employed ytterbium atoms coupled to a cavity via a narrow transition. However, the
finesse of the cavity was so high that the atomic decay rate was still twice the cavity decay rate. Consequently,
on resonance, spontaneous emission remained the main decay channel. In order to avoid spontaneous
emission leading to heating and trap loss they coupled the atoms dispersively to their cavity, so that the
bistable features appeared far from the atomic resonance.

4. Conclusion

We have observed and characterized a new mechanism for the emergence of saturation-induced bistability in
an optical cavity strongly coupled to N atoms. This new mechanism relies on the complete saturation of a
narrow atomic transition quasi-resonant with a cavity mode, where the atomic cloud becomes transparent to
the incoming light above a threshold intensity, and a third peak appears in the center between the normal
mode resonances. At odds with the previously observed saturation-induced bistability, this new mechanism
does not induce an intensity-dependent shift of the frequency for the maximum transmission, and
symmetrically induces a bistability window on both sides of the maximum transmission peak. It needs,
moreover, a quantum two-level transition to occur, and cannot simply be mimicked by a nonlinear
susceptibility in a classical system.

The reason why this new bistability mechanism was just now discovered is that atom-cavity systems are
often studied in the good-cavity regime, while this resonant bistability emerges in the bad cavity limit, that is,
when Γ< κ. In this range of parameters, the coherence of the light-atom interaction is mainly stored within
the atomic coherence. This feature has recently received much attention, due to the possibility of using
ultra-narrow transitions of strontium atoms coupled to a resonant optical cavity to build ultra-narrow lasers
for metrology [10, 13], decoupled from the cavity noise. The proposed regime for achieving ultra-narrow
laser emission relies on strong collective coupling between the atoms and the cavity, as well as on the
inversion of the atomic population. Thus, bistable effects such as the one reported here are likely to play an
important role.

Motivated by the discovery reported here, and in order to provide a complete picture of the whole phase
diagram valid in all regimes, we included in our discussion previous experiments performed in the
good-cavity limit. We could comprehensively link all phases to the different relevant parameter ratios, Γ/κ,
ΥN = Ng2/Γκ, s1 = 8g2/Γ2, and nη = s1η+. This work will guide the exploration of nonlinear coupling
between atoms and an optical cavity through up-to-now unexplored regimes, in particular for narrow atomic
transitions in the bad cavity limit, where the quantum nature of the atoms cannot anymore be neglected.

The intensity filtering provided by the threshold behavior of the resonant transmission of the cavity can
generate non-trivial correlations on the reflected or transmitted light or entanglement between the optical
and atomic degrees of freedom. We remember that squeezing has been observed in the light reflected from a
‘bad cavity’ interacting with atoms [20]. Those interesting prospects will be investigated in future work.
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Appendix. Open Dicke model for atoms distributed over the mode volume of a ring
cavity

The starting point for the theoretical description is the open system Dicke Hamiltonian for N atoms
interacting with two counter-propagating modes of an optical ring cavity. The rotating wave approximation
having been made, it reads,

Ĥ= Ĥfield + Ĥpump +
N∑

j=1

(
Ĥ( j)

atom + Ĥ( j)
atom:field

)
, (11)

with

Ĥ( j)
atom =−∆aσ̂

+
j σ̂

−
j =−∆a

2

(
I2 + σ̂z

j

)
Ĥfield =−

∑
±
∆câ

†
±â±

Ĥpump =−
∑

±
ıη±

(
â± − â†±

)
Ĥ( j)

atom:field = g
∑

±

(
â±σ̂

+
j e±ıkzj + â†±σ̂

−
j e∓ıkzj

)
. (12)

Here,∆a ≡ ω−ωa with ωa = 2π c/λa being the atomic resonance frequency, and∆c ≡ ω−ωc with
ωc = 2πmδfsr being a cavity resonance frequency. δfsr is the cavity’s free spectral range andm ∈ N. η± are the
pump rates of the two counter-propagating modes, g the atom-field coupling strength (corresponding to half
the single-photon Rabi frequency), and gN = g

√
N is the collective coupling strength. σ̂+

j , σ̂
−
j , σ̂z

j are the
usual Pauli matrices applied to the jth atom, so that

ŝ= 1
2

 σ̂− + σ̂+

ı(σ̂− − σ̂+)
[σ̂+, σ̂−]

 (13)

is the atomic spin operator. â±, â
†
± are the usual photonic field operators for the counter-propagating modes.

Note that we do not treat photonic recoil e∓ıkzj as a degree of freedom, but just as a parameter depending
on the location of the atoms. Decay processes can be considered in a master or in Heisenberg equations via
jump operators, L̂= σ̂−, â−, describing decay processes occurring, respectively, at rates γ = Γ, 2κ.

Derivation of the equations of motion
Using the Hamiltonian (11) and for the decay processes L̂ the Lindblad superoperator expression
L†
γ,L̂

Â= γ(2L̂†ÂL̂− L̂†L̂Â− ÂL̂†L̂), we derive the equations of motion for the individual atomic operators,

˙̂σ−
i =−ı

[
σ̂−
i ,Ĥ

]
+L†

Γ/2,σ̂−
i

σ̂−
i

=
(
ı∆a − Γ

2

)
σ̂−
i + ıg

(
eıkzi â+ + e−ıkzi â−

)
σ̂z
i , (14)
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and

˙̂σz
i =−ı

[
σ̂z
i ,Ĥ

]
+L†

Γ/2,σ̂−
i

σ̂z
i

=−2ıg
(
eıkzi â+ + e−ıkzi â−

)
σ̂+
i

+ 2ıg
(
e−ıkzi â†+ + eıkzi â†−

)
σ̂−
i −Γ(I2 + σ̂z

i ) (15)

and for the field operators,

˙̂a± =−ı
[
â±,Ĥ

]
+L†

κ,ââ±

= (ı∆c −κ) â± − ıg
∑
j

σ̂−
j e∓ıkzj + η± . (16)

Stationary solution
The stationary solution follows from the expectation values of the equations (14)–(16),

(i) 0=
(
ı∆a − Γ

2

)〈
σ̂−
i

〉
+ ıg

(
eıkzi ⟨â+σ̂z

i ⟩+ e−ıkzi ⟨â−σ̂z
i ⟩
)

(ii) 0=−2ıg
(
eıkzi

〈
â+σ̂

+
i

〉
+ e−ıkzi

〈
â−σ̂

+
i

〉)
+ 2ıg

(
e−ıkzi

〈
â†+σ̂

−
i

〉
+ eıkzi

〈
â†−σ̂

−
i

〉)
−Γ(I2 + ⟨σ̂z

i ⟩)

(iii) 0= (ı∆c −κ)⟨â±⟩− ıg
∑
j

e∓ıkzj
〈
σ̂−
j

〉
+ η± (17)

Neglecting all correlations by setting, e.g. ⟨â±σ̂z
i ⟩= ⟨â±⟩⟨σ̂z

i ⟩, and analogously for all operator products, we
loose phenomena rooted in entanglement, such as spin-squeezing. Using the abbreviations,

Uγ ≡ U0 − ıγ0 ≡
g2
(
∆a − ıΓ2

)
∆2

a +
Γ2

4

and ∆κ ≡∆c + ıκ , (18)

where U0 has the meaning of a single-photon light shift and γ0 of single-photon scattering rate,
equation (17)(i) resolved by ⟨σ̂−

i ⟩ becomes,〈
σ̂−
i

〉
=−Uγ

g

(
eıkziα+ + e−ıkziα−

)
⟨σ̂z

i ⟩ . (19)

Substituting ⟨σ̂±
i ⟩ in (17)(ii), (

1+ 2
∣∣∣Uγ

g

∣∣∣2 ∣∣eıkziα+ + e−ıkziα−
∣∣2)⟨σ̂z

i ⟩=−1 , (20)

and in (iii),

∆κα± +
∑
j

Uγ

(
eıkzj∓ıkzjα+ + e−ıkzj∓ıkzjα−

)〈
σ̂z
j

〉
= ıη± . (21)

Eliminating ⟨σ̂z
j ⟩ from the expressions (20) and (21),

∑
j

−Uγ

(
α± + e∓2ıkzjα∓

)
1+ 2|Uγ/g|2|eıkzjα+ + e−ıkzjα−|2

= ıη± −∆κα± , (22)

which is the expression (2) given in the main text.

Saturation-induced bistability
It is obvious that the steady-state expression (22) will generate bistable behavior. With the aim of deriving an
analytic solution accounting for our experimental situation we assume that the atomic cloud is
homogeneously distributed over the cavity’s mode volume. The other extreme case that the atoms are
perfectly bunched, b≡ 1

N

∑
j e

2ıkzj = 1, which is the case when the atoms are arranged in an optical lattice,
can be treated analogously and produces similar results except from the fact that the mode α−
counter-propagating to the pumped mode α+ may receive a considerable number of photons due to
Bragg-enhanced backscattering.
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In the case of a homogeneous cloud (no bunching b= 0) and with one-sided probing, η− = 0, we may
neglect backscattered light altogether, α− = 0. Re-scaling via ∆̄c ≡∆c/κ and ∆̄a ≡ 2∆a/Γ and using the
definitions of the single-atom cooperativity and the single-photon saturation parameter,

Υ≡ Ω2
1

Γκ
=

4g2

Γκ
and s1 ≡

2Ω2
1

Γ2
=

8g2

Γ2
, (23)

the expression (22) simplifies to,

α+ =
η+
κ

1

1− ı∆̄c +
NΥ(1+ı∆̄a)
2(1+s1n+∆̄2

a)

, (24)

so that for the intracavity mean photon number we get,

n=
η2+/κ

2(
1+ NΥ/2

1+s1n+∆̄2
a

)2
+
(
∆̄c − ∆̄aNΥ/2

1+s1n+∆̄2
a

)2 . (25)

The ‘good-cavity’ regime, s1 <Υ, and the ‘bad-cavity’ regime, s1 >Υ, are delimited by the ratio between the
single-photon saturation and the single-atom cooperativity.

The expression (25) can be written in terms of a third order polynomial,

0= An3 +Bn2 +Cn+D , (26)

with the coefficients,

A = s21
(
1+∆̄2

c

)
B = 2s1

(
∆̄2

a +
ΥN
2

)
+ 2s1∆̄c

[
∆̄c

(
1+∆̄2

a

)
− NΥ

2 ∆̄a

]
− s1sη

C =
(
∆̄2

a +
ΥN
2

)2
+
[
∆̄c

(
1+∆̄2

a

)
− NΥ

2 ∆̄a

]2 − 2sη
(
1+∆̄2

a

)
D = −nη

(
1+∆̄2

a

)2 , (27)

where we defined the collective cooperativity, the maximum photon number, and the maximum saturation
parameter,

ΥN ≡ NΥ+ 2 and nη ≡
η2+
κ2

and sη ≡ s1nη . (28)

The roots of the cubic equation are given by,

R≡ 3

√
36CBA− 108DA2 − 8B3 + 12

√
3A

√
4C3A−C2B2 − 18CBAD+ 27D2A2 + 4DB3 (29)

and

X± ≡ R

6A
± 6AC− 2B2

3AR
(30)

so that,

n1 = X− − B

3A
, n2,3 =−1

2
X− − B

3A
± ı

√
3

2
X+ , (31)

from which we obtain the roots n= |α+|2 and the field amplitude from (24).
The atomic state can be obtained from equations (19) and (20),

⟨σ̂z
i ⟩=− 1

1+ 2|Uγ/g|2|α+ +α−|2〈
σ̂−
i

〉
=

Uγ

g
(α+ +α−)⟨σ̂z

i ⟩ . (32)

All numerical curves shown in this work are obtained by evaluating the solutions (31) discarding all
solutions with photon numbers n /∈ R+. Figures 5 and 8 exhibit spectral ranges characterized by the presence
of several solutions, while the theoretical spectra of figures 3(d)–(f) and 4(c) only show the solution
corresponding to the highest photon number.
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Critical pump rate on resonance
Let us now discuss the resonant case,∆c = 0=∆a, for which equation (24) becomes,

α+ ≃ η+
κ

ns1 + 1
1
2NΥ+ ns1 + 1

. (33)

From this formula we can easily evaluate the relative importance of collective cooperativity and saturation.
Since NΥ≫ 1, we get below saturation,

α+
n→0−→ η+

κ

2

NΥ
, (34)

that is, the excitation of the cavity field is heavily suppressed by the normal mode splitting. On the other
hand, at high saturation,

α+
n→∞−→ η+

κ
, (35)

the cavity becomes fully transparent.
For intermediate saturation we evaluate the coefficients (27) of the cubic equation (decorated by an

apostrophe),

A ′ = s21
B ′ = s1 (ΥN − sη)

C ′ = 1
4Υ

2
N − 2sη

D ′ =−nη . (36)

The cubic equation (26) with the resonant coefficients (36) has three degenerate real solutions if for some
coefficient nt,

n3 + B ′

A ′ n
2 + C ′

A ′ n+
D ′

A ′ = (n− nt)
3
. (37)

In other words,

B ′

A ′ =−3nt , C ′

A ′ = 3n2t , D ′

A ′ =−n3t . (38)

From (38) we derive,

3s1nt = sη −ΥN

3
4Υ

2
N − 6sη = (sη −ΥN)

2

27sη = (sη −ΥN)
3
. (39)

The equations are solved for

(sη,ΥN, s1nt) = (0,0,0) ,(−1,2,−3) ,(27,18,3) , (40)

the only non-trivial physical solution being the last one. This means, that the onset of bistability occurs
when,

NΥ= 16 and nη = 27/s1 and nt = 3/s1 . (41)

The onset is entirely governed by an interplay between the saturation parameter sη , tuned via the rate at
which the cavity is pumped, and the collective cooperativityΥN, which can be controlled via the number of
atoms fed into the cavity mode volume. For our experiment this means, that we observe bistability if more
that N > 1232 atoms interact with the cavity and the pump rate is high enough to inject nη > 2.29 photons
resonantly into the cavity in the absence of atoms. Under these circumstances, we actually find nt > 0.25
photons in the cavity in the presence of 1232 atoms.
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Figure 8. Numerical simulations of the normalized intracavity photon number as a function of the normalized pump rate for
gN = 1.2κ. They confirm the existence of a single solution for s1nη < 2600 [according to (43)] or for s1nη > 845000 [according
to the right-hand inequality of (46)]. Bistability with three solutions is observed for the interval specified by the left-hand
inequality of (46) and by (50), that is, 4850< s1nη < 432000. Finally, bistability with two solutions is seen in the remaining
intervals. The yellow area marks low saturation.

Condition for three positive real solutions
The condition 0= d

dn (A
′n3 +B ′n2 +C ′n+D ′) yields the positions of the turning points of the cubic curve

parameterized by (26),

nturn =− B ′

3A ′ ±
B ′

3A ′

√
1− 3A ′C ′

B ′2 . (42)

In order for the cubic curve to have three (not necessarily degenerate) real roots, the cubic curve must have
two distinct maxima. That is, (42) must yield two real solutions (called turning points), which requires
B ′2 < 3A ′C ′. In order for the cubic curve to have three positive real roots, both turning points must be
positive. Since A ′ > 0 we necessarily need B ′ < 0, which leads to,

ΥN < s1nη . (43)

Furthermore, we must satisfy,

0< 1− 3A ′C ′

B ′2 < 1 . (44)

Inserting the coefficients (36) we obtain,

s2η − 2ΥNsη + 6sη +
1
4Υ

2
N > 0> 6sη − 3

4Υ
2
N . (45)

For large collective cooperativity,ΥN ≫ 1, we may simplify,

ΥN

(
1+

√
3
2

)
< s1nη <

Υ2
N
8 . (46)

The criterion (46) clarifies, that an essential condition for resonant bistability is a sufficiently large collective
cooperativityΥN ≫ 8+ 4

√
3. If this is satisfied, one can always find a pump rate η+ such that bistability can

be reached.
The theoretical curve shown in figure 8 shows the photon numbers calculated in resonance,

∆a = 0=∆ca as a function of pump strengths. Bistable phases are recognized by the presence of several
solutions marked in different colors. The transitions between different phases are delimited by the
conditions (43) and (46) and are marked in figure 8 as vertical black dashed or dash-dotted lines.

In order to derive an analytic expression for the boundary near s1nη = 432000 (vertical black dashed line
in figure 8) we note that the region above the boundary is characterized by the existence of three solutions,
two of which are degenerate. These solutions can be found by a procedure similarly to the one previously
implemented in equation (37). We plug the coefficients (36) into the ansatz,

n3 + B ′

A ′ n
2 + C ′

A ′ n+
D ′

A ′ = (n− nd)
2
(n− ns) (47)
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and compare the coefficients. This yields a set of equations in the photon numbers ns, nd, and nη ,

0= s1ns + 2s1nd +ΥN − s1nη

0= 8s21ndns + 4s21n
2
d −Υ2

N + 8s1nη

0=−s31n
2
dns + s1nη . (48)

To find an approximate analytic solution of the set of equations (48), we assume,ΥN ≫ 1 and ns ≫ nd,
which simplifies the set to,

0= s1ns − s1nη

0= 8s21ndns −Υ2
N + 8s1nη

0=−s31n
2
dns + s1nη . (49)

The solution is,

s1nη ≃ Υ2
N

16 . (50)

Spectral width of the bistable regime
Here, we want to calculate the spectral width of the bistable regime, that is, the width of the ridge connecting
the normal modes of figure 3 and the width of the central feature of figure 4. Unfortunately, the condition
∆ca =∆c −∆a = 0 entails cumbersome formulas. For simplicity we use instead ∆̄c = 0, which corresponds
to a cut along a diagonal emphasized by dotted lines in figure 3. Assuming a small spontaneous decay rate,
|∆̄a| ≫ 1 and a large collective cooperativity,ΥN ≫ 1, the coefficients (27) become (decorated by a double
apostrophe),

A ′ ′ = s21
B ′ ′ ≃ s1

(
2∆̄2

a +ΥN − sη
)

C ′ ′ ≃ ∆̄4
a +

(
Υ2

N
4 − 2sη

)
∆̄2

a

D ′ ′ ≃−nη∆̄
4
a . (51)

The coefficient B
′′
determines the slope of the cubic curve in its turning point. For A ′ ′ > 0 it must be

negative in order to allow for more than one real solution. Thus, we can use the condition B ′ ′ = 0 to deduce
that, for small enough spontaneous decay rate, the spectral width of the bistable regime is proportional to the
Rabi frequency,

|∆a|= Γ
4

√
sη −ΥN = 1

2

√
Ω2

η

2 − Γ2ΥN
4 ≃ Ωη

2
√
2
. (52)
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